محاسبه رگرسیون غیر خطی(Nonlinear Regression) در SPSS
رگرسیون غیر خطی در الگوریتم هایی که برای تطبیق توابع غیر خطی تصادفی بر روی داده های گرد آوری شده مورد استفاده قرار می گیرد. در واقع در اینجا هدف برازش تصادفی یکی از 21 تابع مندرج در جدول 1 بر روی داده های گردآوری شده جهت رسیدن به حداکثر مقدار ضریب تعیین است. نکته حائز اهمیت در انجام رگرسیون غیر خطی این است که داده های ورودی آن از جنس کمی هستند و داده های کیفی فقط در صورتی قابل قبول هستند که به صورت متغیر مجازی و صفر و یک وارد دستگاه رگرسیون شود. پس از تعیین تابع هدف که یکی از توابع زیر است، با جستجو و از سر گیری های متفاوت این تابع تصادفی بر روی روابط بین متغیر های مستقل و وابسته بای یافتن بهترین ترکیب بسط داده می شود.
به عنوان مثال در یک پژوهش محقق به دنبال این است که متغیر مستقل تبلیغات بر متغیر میزان فروش به چه شکلی است. برای این منظور ابتدا به کمک یک گراف وضعیت پراکنش متغیر های مستقل و وابسته نسبت به یکدیگر بررسی می شود. بدین منظور ابتدا میزان پخش آگهی تبلیغاتی را در نمودار X و میزان فروش در نمودار Y قرار می گیرد. بررسی ابتدایی این نمودار نشان می دهد
بنابراین نتایج نشان می دهد که با افزایش واحد های پخش آگهی های بازرگانی میزان فروش محصولات شرکت افزایش یافته است لیکن در بخشی از پراکنش بیانگر کاهش فروش است. بدین منظور از منحنی رگرسیون مجانب که بر اساس مدل Mistcherlich استفاده شد. این تابع از قانون بازگشت نزولی پیروی می کند و برای این نوع تحقیقات بهترین گزینه محسوب می شود. که بر اساس جدول شماره یک تابع آن به شکل b1 + b2 * exp(–b3 * x) می باشد. این تابع با مقادیر افزایشی برای X اغاز لیکن سرعت افزایش آن در ادامه کاهش یافته و در نهایت سرعت آن کاهش می یابد. برای انجام تحلیل در SPSS به منوی ANALYSIS و سپس از خانواده رگرسیون ها، رگرسیون NONLINEAR را انتخاب می کنیم.
بر اساس تصویر زیر ایتدا متغیر وابسته که میزان فروش فروش محصول است را در کادر بالا و در قسمت Model expression از تابع b1 + b2 * exp(–b3 * x)را به عنوان تابع تصادفی وارد می کنیم که بر اساس منحنی رگرسیون مجانب که مدل Mistcherlich استخراج شده است.
حال گزینه Parameters را انتخاب و مقادیر b1 را در کادر name و مقدار آغازین آنرا روی مقدار 13 در کادر starting value تنظیم می نمائیم و گزینه add را انتخاب می نمائیم. برای پارامتر b2 نیز مشابه این کار ولی با مقدار شروع اولیه 6- و برای b3 با مقدار شروع اولیه 33/1- را انجام می دهیم و برای هر دو کلید add را می زنیم. حال گزینه constrains را انتخاب و گزینه define parameter را تیک می زنیم. در این مرحله باید پارامتر b1 را وارد کادر مقابل نموده و برای آن مقدار صفر را در این محدوده وارد و کلید add را انتخاب کنیم.
این کار را دقیقا برای دو پارامتر دیگر نیز مانند تصویر زیر انجام می دهیم.
در این مرحله با انتخاب گزینه save باید دو گزینه predicted value و residual انتخاب شوند و کلید continue را انتخاب کنیم.
در پنجره اصلی برای انجام تحلیل می توان کلید OK را انتخاب و در این مرحله نتایج تحلیل رگرسیون غیر خطی ظاهر می شوند. در اولین خروجی مقادیر ضرایب برای تمام پارمتر های مستقل برآورد می شوند که عینا مانند نتایج رگرسیون غیر خطی قابل تفسیر است.
در خروجی بعدی نتایج نشان می دهد که b2 متفاوت است بین دو حالت حداکثر بیشینه فروش ممکنه و فروش در زمانیکه هیچ تبلیغی منتشر نشده است. مقادیر خطای استاندارد برای این ضریب بالا است لذا در اینجا کمی شرایط عدم اعتماد به ضریب وجود دارد.
متغیر b3 که یک پارامتر کنترل کننده در شرایطی است که ماکزیمم سرعت فروش دیده می شود و نسبت به b2 دارای شرایط بهتری است. در قسمت بعد جدول تحلیل واریانس نشان داده شده است. که برای قدرت اندازه گیری متغیر مستقل در پیش بینی تغییرات متغیر وابسته دارد. در نهایت مقدار R2 نشان داده شده است که نتایج حاکی از تبیین 90 درصدی تغییرات متغیر وابسته توسط متغیر مستقل فروش تحت تابع زیر است.
رگرسیون غیر خطی در الگوریتم هایی که برای تطبیق توابع غیر خطی تصادفی بر روی داده های گرد آوری شده مورد استفاده قرار می گیرد. در واقع در اینجا هدف برازش تصادفی یکی از 21 تابع مندرج در جدول 1 بر روی داده های گردآوری شده جهت رسیدن به حداکثر مقدار ضریب تعیین است. نکته حائز اهمیت در انجام رگرسیون غیر خطی این است که داده های ورودی آن از جنس کمی هستند و داده های کیفی فقط در صورتی قابل قبول هستند که به صورت متغیر مجازی و صفر و یک وارد دستگاه رگرسیون شود. پس از تعیین تابع هدف که یکی از توابع زیر است، با جستجو و از سر گیری های متفاوت این تابع تصادفی بر روی روابط بین متغیر های مستقل و وابسته بای یافتن بهترین ترکیب بسط داده می شود.
به عنوان مثال در یک پژوهش محقق به دنبال این است که متغیر مستقل تبلیغات بر متغیر میزان فروش به چه شکلی است. برای این منظور ابتدا به کمک یک گراف وضعیت پراکنش متغیر های مستقل و وابسته نسبت به یکدیگر بررسی می شود. بدین منظور ابتدا میزان پخش آگهی تبلیغاتی را در نمودار X و میزان فروش در نمودار Y قرار می گیرد. بررسی ابتدایی این نمودار نشان می دهد
بنابراین نتایج نشان می دهد که با افزایش واحد های پخش آگهی های بازرگانی میزان فروش محصولات شرکت افزایش یافته است لیکن در بخشی از پراکنش بیانگر کاهش فروش است. بدین منظور از منحنی رگرسیون مجانب که بر اساس مدل Mistcherlich استفاده شد. این تابع از قانون بازگشت نزولی پیروی می کند و برای این نوع تحقیقات بهترین گزینه محسوب می شود. که بر اساس جدول شماره یک تابع آن به شکل b1 + b2 * exp(–b3 * x) می باشد. این تابع با مقادیر افزایشی برای X اغاز لیکن سرعت افزایش آن در ادامه کاهش یافته و در نهایت سرعت آن کاهش می یابد. برای انجام تحلیل در SPSS به منوی ANALYSIS و سپس از خانواده رگرسیون ها، رگرسیون NONLINEAR را انتخاب می کنیم.
بر اساس تصویر زیر ایتدا متغیر وابسته که میزان فروش فروش محصول است را در کادر بالا و در قسمت Model expression از تابع b1 + b2 * exp(–b3 * x)را به عنوان تابع تصادفی وارد می کنیم که بر اساس منحنی رگرسیون مجانب که مدل Mistcherlich استخراج شده است.
حال گزینه Parameters را انتخاب و مقادیر b1 را در کادر name و مقدار آغازین آنرا روی مقدار 13 در کادر starting value تنظیم می نمائیم و گزینه add را انتخاب می نمائیم. برای پارامتر b2 نیز مشابه این کار ولی با مقدار شروع اولیه 6- و برای b3 با مقدار شروع اولیه 33/1- را انجام می دهیم و برای هر دو کلید add را می زنیم. حال گزینه constrains را انتخاب و گزینه define parameter را تیک می زنیم. در این مرحله باید پارامتر b1 را وارد کادر مقابل نموده و برای آن مقدار صفر را در این محدوده وارد و کلید add را انتخاب کنیم.
این کار را دقیقا برای دو پارامتر دیگر نیز مانند تصویر زیر انجام می دهیم.
در این مرحله با انتخاب گزینه save باید دو گزینه predicted value و residual انتخاب شوند و کلید continue را انتخاب کنیم.
در پنجره اصلی برای انجام تحلیل می توان کلید OK را انتخاب و در این مرحله نتایج تحلیل رگرسیون غیر خطی ظاهر می شوند. در اولین خروجی مقادیر ضرایب برای تمام پارمتر های مستقل برآورد می شوند که عینا مانند نتایج رگرسیون غیر خطی قابل تفسیر است.
در خروجی بعدی نتایج نشان می دهد که b2 متفاوت است بین دو حالت حداکثر بیشینه فروش ممکنه و فروش در زمانیکه هیچ تبلیغی منتشر نشده است. مقادیر خطای استاندارد برای این ضریب بالا است لذا در اینجا کمی شرایط عدم اعتماد به ضریب وجود دارد.
متغیر b3 که یک پارامتر کنترل کننده در شرایطی است که ماکزیمم سرعت فروش دیده می شود و نسبت به b2 دارای شرایط بهتری است. در قسمت بعد جدول تحلیل واریانس نشان داده شده است. که برای قدرت اندازه گیری متغیر مستقل در پیش بینی تغییرات متغیر وابسته دارد. در نهایت مقدار R2 نشان داده شده است که نتایج حاکی از تبیین 90 درصدی تغییرات متغیر وابسته توسط متغیر مستقل فروش تحت تابع زیر است.
)12.90 -11.26* exp(0.496 *میزان تبلیغات = میزان فروش
The golden opportunity you're seeking is in Yourself. It's not in your environment, in luck, in chance, or the help of other; it is in yourself Alone
راه های دریافت رایگان مقالات و کتاب ها
اهــدای سلول بنیادی - اهـــدای عضو - محک
لطفا سوالاتتون رو در فروم بپرسید و از پیام خصوصی برای این منظور استفاده نکنید. در صورتی که مایلید من به سوال شما پاسخ بدم @Mami رو در متن سوال قرار بدید.
راه های دریافت رایگان مقالات و کتاب ها
اهــدای سلول بنیادی - اهـــدای عضو - محک
لطفا سوالاتتون رو در فروم بپرسید و از پیام خصوصی برای این منظور استفاده نکنید. در صورتی که مایلید من به سوال شما پاسخ بدم @Mami رو در متن سوال قرار بدید.